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Introduction

Model builders are oftern interested in understanding the conditional variation
of one variable relative to others rather than their joint probability

Question: What feature of the conditional probability distribution are we
interested in?

Usually, the expected value E[y|x], but sometimes might be:
Conditional median or other quantiles of the distribution (20th percentile,
5th percentile, etc), variance

Linear regression deals with conditional mean
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The Linear Regression Model

y = f(x1,x2, · · · ,xk) + ε, where ε is called the disturbance term.

Our theory will specify the population regression equation f(x1,x2, · · · ,xk),
which encompasses its format and the variables that matter.
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Assumptions of the Linear Regression Model

The linear regression model consists of a set of assumptions about how a data
set will be produced by an underlying ”data generating process.”

Assumption A1: The model specifies a linear relationship between y and
x1, · · · ,xk:

y = x1β1 + x2β2 + · · ·+ xkβk + ε

Notice that the assumption is about the linearity in the parameters rather than
in the x’s.
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Linearity of the Regression Model

Each observation of a given data set looks like

y1 = β1x11 + β2x21 + · · ·βkxk1 + ε1

y2 = β1x12 + β2x22 + · · ·βkxk2 + ε1

...

yn = β1x1n + β2x2n + · · ·βkxkn + ε1
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Linearity of the Regression Model

In Matrix form:

y = Xβ + ε

6/50



Ful Rank

Assumption A2: The columns of X are linearly independent and there are
at least k observations.

Assumption A2 states that there are no linear relationships among the
variables.

Here’s an example of a model that cannot be estimated, although we might be
interested in quantifying each of the coefficients: the determinants of Monet’s
prices:

lnPrice = β1 ln Size + β2 lnAspect Ratio + β3 lnHeight + ε

where Size = Width×Height and Aspect Ratio = Width/Height
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Regression

Assumption A3: The disturbance is assumed to have conditional expected
value zero at every observation: E(ε|X) = 0

No value of X conveys any information about ε. We assume that εi’s are
purely random draws from a population.

Moreover, we assume E[εi|ε1, · · · , εi−1, εi+1, · · · , εn] = 0.

Notice that by the Law of Iterated Expectations:

E[εi] = EX [E[εi|X]] = EX [0] = 0
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Regression

Point to note: E[ε|X] = 0⇒ Cov(X, ε) = 0. But the converse is not true:
E[ε] = 0 does not imply that E[ε|X] = 0.

Accordingly, E[y|X] = Xβ.

Assumptions A1 and A3 comprise the linear regression model.

What if E[ε] 6= 0?
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Regression

Assumption A3 is called the exogeneity assumption and it yields E[y] = Xβ.

Whenever E(ε|x) 6= 0, we say that x is endogenous to the model. One way
that this can happen is when we leave out a variable that matters for the
relationship.

Suppose the DGP of a given relationship is given by

Income = γ1 + γ2educ+ γ3age+ u

but we estimate the model

Income = γ1 + γ2educ+ ε

How do we show that A3 is not satisfied?
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Homoskedasticity and Nonautocorrelated Disturbances

Assumption A4: E[εε′|X] = σ2I

Also, notice that V ar[ε] = E[V ar(ε|X)] + V ar[E(ε|X)] = σ2I
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Data Generating Process for the Regressors

Assumption A5: X may be fixed or random.

Fixed X: Experimental designs, whereby the researcher fixes the values of X to
find y.

Random X: Observational studies. However, some columns of the X can be
fixed, such as indicator variables for a given time period or time trends.
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Normality

Assumption A6: ε|X ∼ N(0, σ2I)

This assumption is useful for hypothesis testing and constructing confidence
intervals but might not be needed as the Central Limit Theorem applies to
sufficiently large data.
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Visual Summary of the Assumptions
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Computational Aspects of the Least Squares Regression

Let’s now consider the algebraic problem of choosing a vector b so that the
fitted line x′ib is close to the data.

We need to specify what do we mean by close to the data (the fitting criterion).

Usually, the fitting criterion is the Least Squares method: minimizing the sum
of the squared deviations from the mean.

Crucial feature: LS regression provides us a device for “holding other things
constant”.
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The LS Population and Sample Models

Recall the population regression model: E[yi|xi] = x′iβ

We aim to find an estimate ŷi = x′ib

Define the residuals from the estimated regression as

ei = yi − x′ib

Notice that yi = x′iβ + εi = x′ib+ ei
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The LS Coefficient Vector

The Least Squares criterion requires us to minimize
n∑

i=1
e2

i =
n∑

i=1
(yi − x′ib)2

In matrix terms, we minimize

S(b) = e′e = (y−Xb)′(y−Xb)

Expanding, we have

S(b) = y′y− 2y′Xb + b′X′Xb

18/50



The LS Coefficient Vector

The necessary condition for a minimum is

∂S(b)
∂b = −2X′y + 2X′Xb = 0

X′Xb = X′y

From A2, we know that X has full rank, which guarantees the existence of its
inverse. Then, pre-multiplying both sides by (X′X)−1:

b0 = (X′X)−1X′y

For the solution b0 to minimize the sum of the squared residuals, the matrix
∂2S(b)

∂b2 = 2X′X must be positive definite.
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Algebraic Aspects of the LS Solution

We have
X′Xb−X′y = −X′(y−Xb) = −X′e = 0

Hence, for every column of X, x′ke = 0.

Denote the first row X as x1 ≡ i, two implications follow:
1. The LS residuals sum to zero.
2. The regression hyperplane passes through the point of means of the data.
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Projection

Recall the LS residuals:
e = y−Xb

Inserting b0, we have

e = y−X(X′X)−1X′y = (I−X(X′X)−1X′)y = My

The matrix M is called the “residual maker”:
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The Residual Maker

Properties of the matrix M:
1. M is symmetric
2. M is idempotent
3. MX = 0 (why?)
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The Projection Matrix

Now let
ŷ = y− e = Iy−My = (I−M)y

Thus,

ŷ = X(X′X)−1X′y = Py

P is called a projection matrix: If a vector y is pre-multiplied by P, the result
is the fitted values in the LS regression of y on X.
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The Projection Matrix

Properties of P:
1. P is symmetric
2. P is idempotent
3. PX = X

Moreover, notice that P and M are orthogonal: PM = MP = 0

Therefore, the LS regression partitions the vector y into two orthogonal parts:

y = Py + My = Projection + Residuals
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Partitioning and Partial Regressions

In some situations, we are only interested in a subset of the full set of variables
in X. The remaining variables are added to the model as “controls”.

Recall the returns to education example.

Suppose we have

y = Xβ + ε = X1β1 + X2β2 + ε

How can we find the algebraic solution for b2? That is, what is the LS
estimator of a given subset of parameters, β2, in β?
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Partial Regressions

Set up the normal equations:[
X′1X1 X′1X2
X′2X1 X′2X2

] [
b1
b2

]
=
[
X′1y
X′2y

]

Solving the system above for b1 yields

b1 = (X′1X1)−1X′1)(y−X2b2)
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Partial Regressions

Suppose that X′1X2 = 0. (what does this mean?)

For this special case, the theorem below states that b1 can be obtained by
regressing y on X1 only. Likewise, b2 can be obtained by regressing y on X2
only.
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The FWL Theorem

For the general case, in which X1 and X2 might not be orthogonal, the
following theorem provides the more general solution:
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The FWL Theorem

We can represent b2 as
b2 = (X∗

′

2 X∗2)−1X∗
′

2 y∗

where X∗2 = M1X2 and y∗ = M1y.

Two questions:
1. What is M1X2?
2. What is M1y?
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The FWL Theorem

A special case of the FWL theorem is when we are interested in the
computation of a single coefficient.

Consider the regression of y on a set of variables X and an additional variable
z. Denote the coefficients b and c, respectively.
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The FWL Theorem

Example: Suppose we are interested again in the returns to education equation

Income = β1 + β2educ+ β3age+ β4age
2 + ε

To find b1:
1. Regress Income on age and age2 and obtain residuals r1
2. Regress educ on age and age2 and obtain residuals r2
3. Regress r1 on r2 and find slope coefficient b1.
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Regression with a constant term

Consider now the partition in which X1 = i and X2 is the set of variables in
the regression.

Take a given column x of X2. According to the FWL theorem,

x∗ = M1x

When X1 = i, we denote M1 as M0.

This yields

x∗ = x− ix̄
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Regression with a constant term

The result above says that the residuals in the regression of the columns of X2
on a constant term are deviations from the sample mean.

Therefore, each column of M1X2 is the original variable, now in the form of
deviations from the mean. This general result is summarized in the following
corollary.
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Orthogonal Regression

Finally, from the Orthogonal Partition Regression and FWL theorems, the
next one states that we can estimate each coefficient separately if the columns
of X are orthogonal to each other.
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The Partial Correlation Coefficients

The FWL theorem provides us a framework to “partial out” the effect of a
given variable in a regression.

We can apply the same principles to find the degree of correlation between two
variables after partialling out the effects of other factors.

We proceed as follows:
1. y∗ = residuals in a regression of y on “controls”
2. z∗ = residuals in a regression of xk on “controls”
3. Find the partial correlation r∗y,z, the simple correlation between y∗ and z∗
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The Partial Correlation Coefficients

The square of the partial correlation coefficient is

r∗2y,z = (z∗′y∗)2

(z∗′z∗)(y∗′y∗)
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Sum of Squared Residuals
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Goodness of Fit

We measure the goodness of fit of our estimates by asking whether variation in
X is a good predictor of variation in y.

We measure variation of a variable as deviation from its mean.

For an individual observation, we have:

yi = ŷi + ei = x′ib + ei

Subtracting ȳ from both sides:

yi − ȳ = ŷ − ȳ + ei

Recall that ȳ = x̄′b. Thus,

yi − ȳ = (xi − x̄)′b + ei
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Decomposition of yi
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Total Sum of Squares

Notice that both
∑n

i=1 (yi − ȳ) and
∑n

i=1 (xi − x̄) sum to zero. Therefore, to
quantify the fit, we use the sum of squares, instead.

The total variation in y is, thus, the sum of the squared deviations

SST =
n∑

i=1
(yi − ȳ)2
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Goodness of Fit

For the full set of observations, we have

M0y = M0Xb + M0e,

where M0 is the n× n idempotent matrix that transforms observations into
deviations from sample means.

That is, M0 is the residual maker for X = i.

The total sum of squares is

y′M0y = b′X′M0Xb + e′e

SST = SSR+ SSE

Notice that this is the same partition we found before:
y = Projection + Residuals
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Goodness of Fit

Our measure of goodness of fit is the coefficient of determination:

SSR

SST
= b′X′M0Xb

y′M0y = 1− e′e
y′M0y = 1−

∑n
i=1 e

2
i∑n

i=1 (yi − ȳ)2

We denote it R2 and it lies between 0 and 1 (why?).
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The Adjusted R-squared

One important issue with the R-squared as a measure of fit is that it never
declines when adding variables to the model, even if the additional variables do
not help improve the model’s fit.

44/50



The Adjusted R-squared

Based on this, we introduce an alternative measure, which incorporates a
penalty for added variables to the model:

R̄2 = 1− e′e/(n− k)
y′M0y/(n− 1)

For computational purposes, we can also rewrite R̄2 in terms of the R2:

R̄2 = 1− n− 1
n− k

(1−R2)
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Comments on R̄2

1. R̄2 may decline when a variable is added to the set of independent
variables

2. R̄2 rises or falls depending on whether the contribution of the added
variables to the fit of the regression offsets the correction for the loss of an
additional degree of freedom.
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Linearly Transformed Regressions

As a final algebraic analysis, we consider the case of transformed variables in
the model.
• For instance, changing the units of measurements from kilometers to miles
or “per 1,000 inhabitants”.

Let’s consider the Monet’s paintings example again. Suppose we have two
competing models representing the determinants of Monet’s prices:

Model 1: lnPrice = β1(1) + β2 lnW + β3 lnH + ε

Model 2: lnPrice = γ1(1) + β2 lnWH + β3 lnW/H + u
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An Example: Art Appreciation

Rewrite the model as

Model 1: lnPrice = β1x1 + β2x2 + β3x3 + ε

Model 2: lnPrice = γ1z1 + β2z2 + β3z3 + u

We can see that z1 = x1, z2 = x2 + x3, and z3 = x2 − x3.

We can write these conditions as Z = XP , where P is a nonsingular matrix
that transforms the columns of X.
• What does P look like in this case?
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Linearly Transformed Regressions

In our art appreciation example, what is the relationship between b and z?
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